设为首页 - 加入收藏
广告 1000x90
您的当前位置:主页 > 资源 > 常用软件 > 正文

Nature文献速读!多位生物医学领域“大牛”研究

来源:未知 编辑:天选资讯 时间:2023-05-19

  机器学习模型在生物医学应用中具有巨大的潜力。一个名为GradioHub的新平台为临床医生和生物医学研究人员提供了一种交互式和直观的方式来试用模型,并在真实世界的训练外数据上测试其可靠性。机器学习(ML)研究人员越来越多地成为跨学科合作的一部分,他们与领域专家密切合作,以应对高影响力的临床和生物医学挑战。例如,已经开发了ML算法,可以直接从皮肤病学和放射学图像中推断诊断,自动将医患对话中的信息转录为结构化的电子健康记录,并指导手术机器人自主执行某些物理操作。然而,ML模型对非技术用户的可访问性以及对它们在真实世界数据上的可靠性的质疑是阻碍ML更广泛部署并充分发挥其在生物医学中潜力的两个关键障碍。

  CADD(Computer Aided Drug Design):计算机辅助药物设计,依据生物化学、酶学、分子生物学以及遗传学等生命科学的研究成果,针对这些基础研究中所揭示的包括酶、受体、离子通道及核酸等潜在的药物设计靶点,并参考其它类源性配体或天然产物的化学结构特征,以计算机化学为基础,通过计算机的模拟、计算和预算药物与受体生物大分子之间的相互作用,考察药物与靶点的结构互补、性质互补等,设计出合理的药物分子。它是设计和优化先导化合物的方法,CADD的应用,包括基于结构的药物设计(SBDD)、基于配体的药物设计(LBDD)、高通量虚拟筛选(HTVS)等技术,突破了传统的先导物发现模式,极大地促进了先导化合物发现和优化。特别是在食品、生物、化学、医药、植物、疾病方面应用广泛!靶点的发现与确证是现代新药研发的第一步,也是新药创制过程中的瓶颈之一。CADD的应用可以加快靶点发现的速度,提高靶点发现的准确度,从而推进新药研发。

  AIDD(AIDrug Discovery & Design):是近年来非常火热的技术应用,且已经介入到新药设计到研发的大部分环节当中,为新药发现与开发带来了极大的助力。随着医药大数据的积累和人工智能技术的发展,运用AI技术并结合大数据的精准药物设计也不断推动着创新药物的发展。在新型冠状病毒的治疗方案中,通过一系列计算机辅助药物生物计算的方法发现一大类药物分子可以有效阻止新冠病毒的侵染,为治疗新冠提供了新思路。倾向于机器对数据库信息的自我学习,可以对数据进行提取和学习,一定程度上避免了化合物设计过程中的试错路径,同时还会带来很多全新的结构,为药物发现打破常规的结构壁垒。

  代谢组学是通过比较对照组和实验组,以寻找代谢谱差异的研究方法,近年来,代谢组学在疾病诊断,病理研究,新药开发,药物毒理学,动植物、微生物,营养学等医学与人类健康和疾病密切相关的领域有着广泛的应用,在复杂数据中,人工智能算法用于生物标志物挖掘的组合是解决问题和实施健康科学新技术的常用方法。利用机器学习作为从质谱数据中识别疾病的手段,旨在开发诊断和预后生物标志物、治疗靶点和患者管理系天选团队统。

  机器学习蛋白组学,极大了促进了生物医学领域的发展,使得人们能够从基因组学,转录组学,蛋白组学,代谢组学等各个维度进行深入的研究。一切生命的表现形式,本质上都是蛋白质功能的体现。如果我们能够了解细胞、组织乃至整个生命体内蛋白质的组成及其活动规律,理解不同组织器官在不同生理病理状态下蛋白质组的构成和动态变化,就会对疾病的发生、发展、转归等过程有一个全面的认识,把握疾病诊治的关键,提高药物开发的效率。在高通量测序和多组学的快速发展下,无论是基因组学、表观组学、转录组学、宏基因组学还是蛋白质组学、代谢天选组学,都已经积累了非常庞大的数据,数据的大量增加需要更高效更强大的分析工具才能更好的对海量的组学数据进行深度挖掘,然而传统的信息数据处理算法显然不能满足大数据的处理要求,机器学习作为可以从数据中进行学习的算法,在组学数据分析和挖掘,如对疾病亚型识别、 生物标志物发现、 通路分析以及药物发现及其再利用有着更广泛的前景和应用空间。

  深度学习在许多领域都有应用,在生物信息学领域也不例外!深度学习作为一种机器学习方法,机器学习技术在基因组学研究中得到了广泛的应用。机器学习任务分为两大类:有监督和无监督。在有监督的学习中,目标是通过使用提供的一组有标签的训练示例来预测每个数据点的标签(分类)或响应(回归)。在无监督学习中,例如聚类和主成分分析,目标是学习数据本身的内在模式。许多机器学习任务的最终目标是优化模型性能,而不是在可用数据(训练性能)上,而是在独立数据集(泛化性能)上。基于这个目标,数据被随机分成至少三个子集:训练、验证和测试集。训练集用于学习模型参数,验证集用于选择最佳模型,测试集用于估计泛化性能。机器学习必须在模型灵活性和训练数据量之间达到适当的平衡。一个过于简单的模型将不合适,无法让数据“说话”。一个过于灵活的模型会过度适应训练数据中的虚假模式,而不会泛化。,近两年国内外顶尖课题组MIT、Harvard University、UPenn、清华大学、复旦大学等都在从事深度学习基因组学的研究,这一研究成果更是多次发表在Nature Reviews Genetics、Nature Methods、Science Advances、Cancer Cell、Nature Biotechnology 等知名国际顶刊上,为我们发表顶刊鉴定了基础。

  自然微生物综述( IF:31.851)于2018年在线发表了微生物组领域的研究方法综述,不仅系统总结了过去,更为未来3-5年内本领域研究方法的选择,提供了清晰的技术路线,让大家做出更好的研究,微生物组学研究主要涉及两方面技术:测序技术和数据分析技术,随着基因测序技术的进步和测序成本不断下降,大样本量的微生物组学研究激增。传统的统计方法已经不再适用于极度高维、稀疏的微生物组数据分析,而适用于复杂数据分析的机器学习逐渐成为微生物组学数据分析的首选方法。机器学习已被证明是分析微生物群落数据并对特定结果进行预测(包括人类和环境健康)的有效方法,基于微生物群落数据的机器学习已被成功用于预测人类健康中的疾病状态、环境质量和环境中污染的存在,并可以作为法医学中的微量证据。机器学习算法已经在肠道微生物、微生物组数组表型、环境微生物、微生物生态学、皮肤微生物、土壤微生物、植物微生物、人体微生物等领域应用广泛,通过查阅文献发现近几年机器学习在微生物组研究发刊分值都很高,特别是在Nature Communications、Advanced Materials(IF=30.849)、Water Research Nature Microbiology、Environment International 、Nature Methods、Cell Regeneration、JAIMS等期刊多次发表!

  细胞生物学的相关研究一直受限于数据的完整性和表型的完整性,对应激状态和稳态下的细胞区别观察不够充分。过去五年中,计算机视觉和语音识别领域通过对大量的无标签数据进行学习、建模,很好的解决了数据不足的问题。同样在最近的研究中,机器学习方法使用单细胞数据进行扰动建模也推动了细胞生物领域前进。对于生物学家来讲,无论研究基因、转录本、修饰、蛋白功能,都要频繁的进行人为干预,实现对感兴趣变量的正向或者反向改变,观察细胞表型的变化。整个过程需要对干预工具的构建、导入、实验观察,从而得出表型结论。扰动建模的目的就是想要通过数学模型的建立,通过对已有数据的分析、归纳和总结,对一个分子的功能在没有实验时做出预判,对于生物学家和药物研发者来讲,好的模型一定能够帮助加深对生物机制的理解,推动药物的研发进程

  CADD主讲老师来自国内顶尖药物研究所,老师主要擅长药物虚拟筛选、计算机辅助药物设计、分子对接、分子动力学等方面的研究、知名金牌授课老师、学员好评率达99.9%!

  AIDD授课老师曹老师,有多年的计算机算法研究和程序设计经验。研究方向涉及计算机辅助药物设计、机器学习、深度学习、分子毒性预测、图神经网络生化反应。一作身份发表SCI论文数篇,包括Journal of Biomedical Informatics, International Journal of Molecular Sciences等知名期刊。

  机器学习代谢组学主讲老师来自985高校神经科学博士,主要利用代谢组学、转录组学和分子生物学等技术研究神经内科慢性病的发病机制和生物标志物。擅长高效液相色谱-质谱联用(LC-MS)技术进行非靶向和靶向代谢组学从样本制备到数据分析的全流程研究,以及多组学大数据的生物信息学整合分析。5年内在J Clin Invest, EBioMedicine, Cell Death Dis, Cell Death Discov, Nanotoxicology等杂志发表SCI论文10篇。

  机器学习微生物与蛋白组学实战应用培训班主讲老师来自国内高校李老师授课,有十余年的微生物组数据分析经验。研究领域涉及机器学习,芯片数据分析,微生物组数据分析,DNA,RNA,甲基化测序数据分析,单细胞测序数据分析,miRNA及靶基因分析等,发表SCI论文30余篇,其中一作及并列一作15篇。

  深度学习基因组学主讲老师刘老师,生物信息学博士,有十余年的测序数据分析经验。研究领域涉及人工智能、自然语言处理、功能基因组学、转录组学、miRNA及靶基因网络分析,单细胞测序数据分析,基因调控网络时序分析,蛋白质互作网络分析,多组学联合分析等。主持省自然科学基金等项目4项,出版医学实用教材《Python医学实战分析》,发表SCI论文22篇,其中一作及并列一作9篇。

  机器学习单细胞与单细胞空间转录组主讲老师来自国内高校陈老师和张老师授课。在国内外学术刊物发表论文数篇,包括Nature Communication, Cell Regeneration等知名期刊,研究方向为生物信息学,发育生物学和遗传学等。利用多组学数据,通过深度学习算法进行数据分析和挖掘,包括ChIP-seq,ATAC-seq,RNA-seq,CNV等。

  1.人工智能药物发现(AIDD)简介2.机器学习和深度学习在药物发现领域的应用

  利用PLOS Computational Biology(IF:5分)发表零代码工具,轻松完成差异表达分析,常见统计分析,常见可视化,内置7种机器学习方法,轻松调用。

  利用机器学习基于蛋白组学数据预测表型,基于蛋白组学数据复现cell中机器学习分析结果

  利用机器学习鉴定疾病相关蛋白标志物,基于Olink数据,复现影响因子17分文章中,蛋白数据常规分析+时序蛋白聚类分析+机器学习分析结果

  利用机器学习基于质谱的蛋白质组学数据,构建肝病相关分类和预后模型,复现Nature Medicine文章中的机器学习,生存分析,预后模型相关的结果。

  复现卷积神经网络CNN识别基序特征DeepG4、非编码基因突变DeepSEA,预测染色体亲和性Basset,基因表达eQTL

  深度学习在识别拷贝数变异DeepCNV、调控因子DeepFactor上的应用

  3.基因序列及蛋白质相互作用网络中识别关键基因的深度学习工具DeepHE

  1.联合肿瘤基因标记及药物分子结构预测药物反应机制的深度学习工具SWnet

  5. 基于OTU的差异表达分析,热图,箱型图绘制微生物biomarker鉴定

  5. 讲解单细胞WGCNA,利用关联共表达找到某些细胞中有关联作用的基因list(也就是模块)。

网友评论:

发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片

织梦模板大全 dedecms.codesdq 联系QQ:121673232 邮箱:121673232@qq.com

Copyright © 2002-2011 DEDECMS. 织梦科技 版权所有 Power by DedeCms

Top